منبع پایان نامه با موضوع امولسیون، پیوسته، سطحی، کمی

کاهش مییابد. در نتیجه انرژی آزاد اختلاط سیستم کاهش مییابد.
1-2-11- D(0/1) : ذراتی با این قطر یا کمتر مسئول 10% حجم ذرات موجود در سامانه هستند.
1-2-12- : D(0/5) ذراتی با این قطر یا کمتر مسئول 50% حجم ذرات موجود در سامانه هستند.
1-2-13- D (0/9) : ذراتی با این قطر یا کمتر مسئول 90% حجم ذرات موجود در سامانه هستند (34).
1-2-14- D (4, 3) یا Volume mean diameter(قطر میانگین حجمی)
D[4,3]=??( n_i d_i^4)?( ??n_i d_i^3 )
ni تعداد قطرات با قطر مشخص di (34).
1-2-15- D (2, 1) یا Surface mean diameter
این پارامتر نوعی قطر معادل می باشد. در واقع قطر این کره فرضی است که همان سطح ویژه ذره بدون شکل منظم مورد مطالعه است.
D [2, 1] = ??(n_i d_i^2)?(???n_i d?_i^1 )
ni تعداد قطرات با قطر مشخص di (34).
1-2-16- D (1, 0) یا Number mean diameter (میانگین حسابی قطر)
D [1, 0] =??(n_i d_i^1)?(??n_i )
ni تعداد قطرات با قطر مشخص di (34).
1-2-17- Span: اندازه پهنای نمودار توزیع اندازه ذرات را نشان می دهد هر چه این نمودار باریکتر باشد عدد Span کوچکتر و پراکندگی اطراف میانگین کمتر است. اگر پهنای توزیع اندازه ذرات خیلی باریک باشد، به این معنا است که سامانه تقریبا مونودیسپرس می باشد (34).
Span =(D_0.9-D_0.1)/D_0.5
D(0/1) : ذراتی با این قطر یا کمتر مسئول 10% حجم ذرات موجود در سامانه هستند.
: D(0/5) ذراتی با این قطر یا کمتر مسئول 50% حجم ذرات موجود در سامانه هستند.
D (0/9) : ذراتی با این قطر یا کمتر مسئول 90% حجم ذرات موجود در سامانه هستند.
اهداف پژوهش 1-3-
1-3-1-تعیین تاثیر غلظت های متفاوت از صمغ کتیرا بر پایداری، پارامتر های توصیف کننده اندازه ذرات، کشش سطحی و بین سطحی، ویژگی های ریزساختاری (میکروسکوپی) و ویژگیهای رئولوژیک پایا و نوسانی امولسیون های روغن در آب.
1-3-2- تعیین تاثیر نوع گونه و جزء محلول و نا محلول صمغ کتیرا بر پایداری، پارامتر های توصیف کننده اندازه ذرات، کشش سطحی و بین سطحی، ویژگیهای میکروسکوپی و ویژگیهای رئولوژیک پایا و نوسانی امولسیون های روغن در آب.
1-3-3- تعیین اثر pHو افزودن پروتئین (سدیم کازیئنات) بر پایداری، پارامتر های توصیف کننده اندازه ذرات، کشش سطحی و بین سطحی و ویژگی های رئولوژیک پایا و نوسانی امولسیون های روغن در آب حاوی صمغ کتیرا.
1-3-4- فراهم آوری پایه ای برای پایدار سازی امولسیون های روغن در آب با بیوپلیمرهای طبیعی و صمغ های بومی.
1-3-5- دست یابی به سازوکار پایدارسازی امولسیون ها با صمغ کتیرا.
4-1-فرضیات پژوهش
1-4-1- غلظت های متفاوت پلی ساکارید بر پایداری، پارامتر های توصیف کننده اندازه ذرات، کشش سطحی و بین سطحی، ویژگیهای میکروسکوپی و ویژگی های رئولوژیک پایا و نوسانی امولسیون روغن درآب اثرات متفاوتی دارد.
1-4-2-pH های متفاوت در نسبت معین از پروتئین به پلی ساکارید، بر پایداری، پارامتر های توصیف کننده اندازه ذرات و ویژگی های رئولوژیک پایا و نوسانی امولسیون روغن درآب اثرات متفاوتی دارد. در نمونه های حاوی میزان بالاتر صمغ کتیرا، پایداری و مقاومت به دو فاز شدن در طی زمان افزایش می یابد.
1-4-3- در نمونه های امولسیونی حاوی تنها صمغ با افزایش غلظت صمغ کتیرا، پایداری و مقاومت به دو فاز شدن افزایش می یابد.
1-4-4- نسبت های متفاوت از پروتئین به پلی ساکارید بر پایداری، پارامتر های توصیف کننده اندازه ذرات، کشش سطحی و بین سطحی و ویژگیهای رئولوژیک پایا و نوسانی امولسیون های روغن درآب اثرات متفاوتی دارد.

1-5- جدول متغیرها

متغیر
*نقش متغیر
**نوع متغیر
مقیاس سنجش متغیر
اساس روش آزمون
/ابزار سنجش
زمان
مستقل
کیفی چند سطحی
35 روز

روش تهیه امولسیون
مستقل
کیفی اسمی
3 روش

نسبت پروتئین به پلی ساکارید
مستقل
کمی گسسته


pH
مستقل
کمی پیوسته
AU

PH متر
گونه صمغ کتیرا
مستقل
کیفی اسمی
A.gossypinus
A.fluccosus

نرخ برش
وابسته
کمی پیوسته
s-1
رئومتر
مدول الاستیک
(G’)
وابسته
کمی پیوسته
پاسکال(Pa)
رئومتر
مدول ویسکوز
(G’)
وابسته
کمی پیوسته
پاسکال(Pa)
رئومتر
مدول کمپلکس
(G*)
وابسته
کمی پیوسته
پاسکال (Pa)
رئومتر
ناحیه خطی ویسکوالاستیک
(LVE)
وابسته
کمی پیوسته
درصد
رئومتر
ویسکوزیته
ظاهری
((µa
وابسته
کمی پیوسته
پاسکال-ثانیه
(Pa.s)
رئومتر
پارامتر مدل پاورلا (قدرت ساختار) (a )
وابسته
کمی پیوسته
Pa.sb))
رئومتر
پارامتر مدل پاورلا (نوع ساختار)(b)
وابسته
کمی پیوسته

رئومتر
تنش حد متناظر با انتهای ناحیه خطی (?y)
وابسته
کمی پیوسته
پاسکال
رئومتر
کشش سطحی و بین سطحی
وابسته
کمی پیوسته
میلی نیوتن بر متر (mN/m)
تنسیومتر
پارامتر های توصیف کننده ی اندازه ذرات ذرات D0.1 ، D0.5، D0.9، span
میانگین حجمی قطر ، میانگین سطحی قطر
وابسته
کمی پیوسته
میکرومتر
دستگاه
Particle sizer
ریز ساختار
وابسته
کیفی اسمی

میکروسکوپ نوری
اندیس پایداری
وابسته
کمی پیوسته
درصد

2- مروری بر پژوهش های پیشین
2-1- تاریخچه
امروزه طیف وسیعی از محصولات غذایی به صورت طبیعی یا فرایند شده به فرم امولسیون هستند یا در برخی از مراحل تولید به فرم امولسیون تبدیل می شوند. برای مثال شیر دارای یک سری ترکیبات غشایی طبیعی است که با پوشاندن ذرات چربی، پراکندگی آنها را در محیط آبی ممکن می سازند. در فرمولاسیون های
اولیه ای که برای تولید کره، خامه زده شده، پنیر و بستنی تهیه می شد از امولسیون کننده های طبیعی موجود در این سیستم ها استفاده می شد. همچنین در سس مایونز که به عنوان یک سس سرد در فرانسه توسعه یافت از فسفولیپیدهای طبیعی تخم مرغ برای پراکنده نمودن روغن مایع در یک فاز آبی اسیدی استفاده شده است (24-25). مطابق تعریفی که توسط Becher (1995) ارائه گردیده است (26). امولسیون ها یکی از انواع سیستم های کلوئیدی می باشند و به عنوان جزء مهمی از اکثر سیستم های غذایی عبارتند از دیسپرسیون هایی از دو مایع غیر قابل اختلاط شامل آب و روغن که برحسب پراکنش های فاز روغنی و آبی به دو دسته ی تکی (Single) (مستقیم، وارونه وچند لایه) وچند تایی (Multiple) تقسیم بندی می شوند. آن دسته از سامانه های تکی که شامل روغن پراکنده شده در یک فاز آبی هستند را امولسیون روغن در آب (o/w) یا مستقیم (مثل مایونز، شیر، خامه، سوپ ها وسس ها) و سامانه ای که شامل قطرات آب پراکنده شده در فاز روغنی است را امولسیون آب در روغن (w/o) یا معکوس (مثل مارگارین،کره و مالیدنی ها) می نامند. در بسیاری از مواد غذایی، قطر قطرات امولسیون ها معمولا بین 1/0 تا 100 میکرومتر می باشد (1).

مطلب مرتبط :   دانلود تحقیق در موردعزت نفس، شهر اصفهان، آموزش مادام العمر، دانش آموزان دختر

شکل 2-1- تصویر میکروسکوپی از یک امولسیون روغن در آب (چاشنی مخصوص سالاد) (27).
علاوه بر این دو فاز اصلی (پیوسته و پراکنده)، در یک امولسیون پایدار، مقادیر کمی (معمولا کمتر از 3 درصد) از یک امولسیون کننده یا امولسیفایر یا ماده فعال سطحی برای ایجاد ثبات و پایداری در امولسیون مورد نیاز است (5, 28-29). انرژی آزاد در نتیجه عدم تعادل نیروهای حاصل از چسبندگی دو مایع غیر قابل امتزاج به همدیگر در حد فاصل بین دو مایع ایجاد می گردد. به این ترتیب که سطوح حد فاصل بین دو مایع غیر قابل امتزاج تمایل به انقباض از خود نشان می دهند و به همین دلیل قطرات مربوط به فاز داخلی یا فاز پراکنده به شکل کروی در می آیند و در یک سیستم امولسیون ناپایدار، گرایش این قطرات برای به هم چسبیدن و بهم آمیختگی موجب جداشدن دو فاز از یکدیگر می گردد (27). شکسته شدن امولسیون در اثر به هم چسبیدن قطرات فاز پراکنده باعث کاهش سطح قطرات (در اثر متصل شدن قطرات به همدیگر) و کاهش سطوح بینابینی می گردد. برای تشکیل یک امولسیون پایدار باید با بکارگیری انرژی، تمایل سطوح حد فاصل دو فاز را برای منقبض شدن از بین برد. افزایش درجه حرارت مایعات موجود در امولسیون، تا حدی که در ماهیت مواد تغییری ایجاد نکند، ‌موجب کاهش فشارهای بینابینی می گردد (27) ولی به طور اساسی تثبیت سینتیکی امولسیون ها از طریق بکارگیری امولسیفایرها امکان پذیر می باشد. امولسیفایر ها به چهار دسته اصلی تقسیم می شوند :گروه اول شامل یون های غیر سور فاکتانت که بر سطح قطره جذب می شوند اما تاثیری بر کاهش کشش بین سطحی و تسهیل فرآیند امولسیون سازی ندارند، گروه دوم ذرات کلوئیدی جامد غیر سور فاکتانت (مانند سلیکا و Clay) که بر سطح قطره جذب می شوند و نوعی محافظ فیزیکی بین قطرات ایجاد کرده و مانع الحاق می شوند. گروه سوم سورفاکتانت های مونومری همانند سدیم دودسیل سولفات. این گروه توانایی کاهش کشش بین سطحی و افزایش پایداری امولسیون را دارند اما از جمله معایب آنها آسیب رسان بودن و قابلیت سمی بودن در محیط زیست می باشد. گروه آخر، سورفاکتانت های پلیمری (پروتئین و پلی ساکارید ها) می باشند که از جمله ویژگی های آنها کاهش کشش بین سطحی، القای میانکنش های الکترواستاتیک و استریک، تغییر در گرانروی میان سطح یا الاستیسیته، تغییرات در گرانروی فاز پیوسته و بهبود پایداری می باشد (30). اکثر عوامل امولسیون کننده دارای ساختمانی آمفی فیلیک هستند، یعنی هم حاوی گروههای قطبی و هم گروه های غیر قطبی می باشند. در صورتی که این گروه ها به میزان کمی از تعادل با یکدیگر خارج گردند، امولسیفایر برای اتصال به یکی از دو فاز تمایل بیشتری از خود نشان خواهد داد. بنابراین فازی که تمایل بیشتری برای اتصال به امولسیفایر از خود نشان می دهد، فاز پیوسته یا فاز خارجی نامیده می شود. هنگامی که مقادیر کمی از عوامل امولسیون کننده (امولسیفایرها) به دو مایع غیر قابل اختلاط افزوده شود، این عوامل در حد فاصل بین دو فاز قرار گرفته و سطح قطرات فاز پراکنده را با ایجاد یک لایه نازک به دور آن پوشش داده و به این ترتیب فشارهای بینابینی را کاهش می دهند و از به هم چسبیدن و اتصال قطرات جلوگیری می کنند و در نتیجه موجب پایداری امولسیون می گردند (4, 24).
2-2- عوامل ناپایداری امولسیون ها
امولسیون ها معمولا به علت اختلاف دانسیته و نیروی کشش بین سطحی دو فاز می شوند، هم چنین مشخص شده است فشار لاپلاس مخالف پایداری امولسیون های یگانه عمل می کند. اصولا ناپایداری ترمودینامیکی ویژگی مشترک بین تمام امولسیون ها می باشد دلیل این امر آن است که برای تبدیل فصل مشترک مجزای بین دو فاز روغن و آب (صفحه ای مسطح) به فصل مشترک بین قطرات فاز پراکنده و پیوسته (جهت بیشتر نمودن سطح تماس بین دو فاز) در طی مرحله همگن سازی، نیروی محرکه ای به سیستم وارد می شود. این مساله موجب می گردد که امولسیون ها در سطح انرژی بالاتری نسبت به فازهای مجزای اولیه قرار گیرند. به عبارتی بهتر، امولسیون ها تمایل دارند که با گذشت زمان به حالت تعادل (سطح انرژی پایین تر) برسند که منظور از حالت تعادل، شکستن کامل دو فاز آب و روغن است. چهار سازوکار فیزیکی عمده دخیل در شکستن امولسیون ها عبارتند از: خامه ای شدن(Creaming)، انبوهش(لخته شدن) (Flocculation)، الحاق (Coalescence)، Ostwald
ripening و وارونگی فاز (Phase inversion). همچنین فرایند های شیمیایی به علت تغییر در ساختار شیمیایی مولکول ها بوجود می آیند. از جمله ناپایداری های شیمیایی می توان هیدرولیز و اکسایش را نام برد (4, 27, 31).

مطلب مرتبط :   پایان نامه رایگان درموردمعرفت و محبت، سعادت و کمال

شکل 2-2- تصویری شماتیک از انواع ساز و کار های ناپایداری امولسیون ها (27).
2-2-1-بهم پیوستگی (Coalescence)
هنگامی بهم پیوستگی قطرات در یک سیستم امولسیون رخ می دهد، قطرات موجود در سیستم بسیار به هم نزدیک شوند و توده ای بوجود آورند. به عبارتی قطرات اولیه پس از پیوستن به یکدیگر به یک قطره بزرگتر (نه تجمعی از قطرات اولیه) تبدیل می شوند (شکل 2- 2). McClements در سال 2004 بیان داشت که توانایی قطرات امولسیون برای ایجاد فرآیند بهم پیوستگی در سیستم به دو عامل بستگی دارد که شامل ماهیت نیروهای غالب میان قطرات (نیروهای جاذبه برهم کنش های کلوئیدی و نیروهای مکانیکی) و هم چنین میزان مقاومت لایه محافظ تشکیل شده توسط امولسیفایر در برابر شکستن می باشد (27). از جمله دلایلی که بر سرعت بهم پیوستگی تاثیر می گذارد عبارتند از: برخورد بین قطرات، زمان تماس بین قطرات و تشکیل منفذ بر روی لایه تشکیل شده توسط امولسیفایر برخورد بین قطرات در نتیجه حرکت قطرات ایجاد می شود که منشاء این حرکت بر اثر حرکت براونی (Brownian motion)، جدایش در اثر نیروی جاذبه و یا نیروهای مکانیکی به کار رفته می باشد که اگر این حرکات باعث جدا شدن امولسیفایر از روی قطرات شود بهم پیوستگی بین قطرات ایجاد می شود. بنابراین سرعت بهم پیوستگی به فرکانس برخورد (Collision frequency) و بازده برخورد (Collision efficiency) بستگی دارد. فرکانس برخورد عبارت است از تعداد برخورد قطرات در واحد زمان و واحد حجم امولسیون. McClements در سال 2004 بیان داشت که رابطه زیر برای امولسیون هایی با جزء حجمی کم از فاز پراکنده و قطرات بطور کامل کروی صادق است:
(1)
این معادله، رابطه میان فرکانس برخورد (FB) را با هر یک از عوامل زیر بیان می دارد:
1? ویسکوزیته فاز پیوسته،T دمای مطلق، k ثابت استفان بولتزمن، ? جزء حجمی فاز پراکنده، r شعاع قطره (27). با توجه به رابطه فوق اگر جزء حجمی فاز پراکنده افزایش یابد و ویسکوزیته فاز پیوسته کم و یا اینکه قطرات کوچکتر شوند، فرکانس برخورد افزایش یافته که نتیجه آن افزایش سرعت بهم پیوستگی قطرات در سیستم امولسیون است. بنابراین در نبود امولسیفایر (به دلیل عدم ایجاد غشای محافظ در اطراف قطرات) بازده برخورد بسیار زیاد است. از این رو، در امولسیون هایی که مقدار امولسیفایر کافی نباشد، احتمال پدیده بهم پیوستگی بسیار زیاد است. اما در صورت وجود امولسیفایر به مقدار کافی، به واسطه وجود برهم کنش های دافعه میان قطرات امولسیون، بازده برخورد بسیار کم است. بازده برخورد بیانگر میزان مواجهات قطرات امولسیون با یکدیگر است که منجر به ناپایداری امولسیون می شود. بازده برخورد در بازه صفر تا یک متغیر است. عدد صفر نشانگر عدم وقوع پدیده بهم پیوستگی و لخته شدن و عدد یک به منزله برخورد مؤثر تمام قطرات با یکدیگر است. بعلاوه این شاخص به برهم کنش های کلوئیدی و هیدرودینامیکی میان قطرات وابسته است. روابط بسیاری برای تعیین بازده برخورد بر پایه نوع ساز و کار برخورد وجود دارد که در اینجا تنها رابطه مربوط به ساز و کار حرک